Délky period převrácených hodnot prvočísel/Délka l = 9 nebo 18
Toto je vlastní výzkum. Všechny informace, zde uvedené, jsou již dávno známy; vlastním výzkumem je seřazení/prezentace těch informací a naznačené souvislosti mezi nimi.
Základní zákonitosti
[editovat]- Jedná se o délku lichou a její dvojnásobek. Z toho plyne, že číselné soustavy zn, v nichž má dané prvočíslo p délku l = 9, mají k sobě doplňkovou č. soustavu zm = p - zn, ve které je l = 18.
- Každé prvočíslo, kterého se týká tento článek, odpovídá vzorci p = 18n + 1.
- Každé prvočíslo, kterého se týká tento článek, je v osmnáctkové soustavě zakončeno jedničkou.
- Pro každé prvočíslo p (p = 18n + 1) existuje právě šest č. soustav s délkou l = 9 a právě šest s délkou l = 18.
- Je-li v č. soustavě z0 délka l = 9, potom stejná délka (9) je také v soustavách z02, z04, z05, z07 a z08, případně v soustavách o np menších, ale větších než 1. Z toho důvodu stačí uvést pouze jednu soustavu z0 a ne všech 12 (6 s l = 9 a 6 s l = 18).
- Je-li v č. soustavě z0 délka l = 9, potom délka l = 3 je v soustavách z03 a z06, případně v soustavách o np menších, ale větších než 1.
Vzorový příklad rozdělení v tabulce
[editovat]Poř.č. e |
z | z*z0[10] | z*z0[z] | l k/Dk/e |
podíl, zaokr. dolů | p - z |
---|---|---|---|---|---|---|
0 | 1 | 7 | 10 | (9) | 0 | (30) |
1 | 7 | 49 | 100 | 9 | 1 | 30 |
2 | 12 | 84 | 150 | 9 | 2 | 25 |
3 | 10 | 70 | 130 | 3 | 1 | 27 |
4 | 33 | 231 | 450 | 9 | 6 | 4 |
5 | 9 | 63 | 120 | 9 | 1 | 28 |
6 | 26 | 182 | 350 | 3 | 4 | 11 |
7 | 34 | 238 | 460 | 9 | 6 | 3 |
8 | 16 | 112 | 220 | 9 | 3 | 21 |
9 | 1 ( = 38) | 7 | 10 | 1 | 0 | (28) |
V posledním sloupci (p - z) jsou uvedeny číselné soustavy 3, 4, 21, 25, 28 a 30, ve kterých má prvočíslo 37 délku periody převrácené hodnoty l = 18 a také číselné soustavy 11 a 27, ve kterých má prvočíslo 37 délku periody převrácené hodnoty l = 6.
Délky podle soustav
[editovat]Seznam prvočísel o délce l = 9 můžete sledovat na internetové stránce Délky p. h. l = 9 pro z = 2 až 999. V tomto seznamu u každé soustavy chybí to největší prvočíslo, místo toho je pouze označeno (P n), kde n je počet cifer v tom prvočísle (zapsaném v desítkové soustavě). Seznam prvočísel o délce l = 18 můžete sledovat na internetové stránce Délky p. h. l = 18 pro z = 2 až 999.
Délky podle prvočísel
[editovat]p(10) | 19 | 37 | 73 | 109 | 127 | 163 | 181 | 199 | 271 | 307 | 379 | 397 | 433 | 487 | 523 | 541 | 577 | 613 | 631 | 739 | 757 | 811 | 829 | 883 | 919 | 937 | 991 | 1009 | 1063 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
f k/18 | 1 | 2 | 2^2 | 2∙3 | 7 | 3^2 | 2∙5 | 11 | 3∙5 | 17 | 3∙7 | 2∙11 | 2^3∙3 | 3^3 | 29 | 2∙3∙5 | 2^5 | 2∙17 | 5∙7 | 41 | 2∙3∙7 | 3^2∙5 | 2∙23 | 7^2 | 3∙17 | 2^2∙13 | 5∙11 | 2^3∙7 | 59 |
l = 9 | 4 | 7 | 2 | 16 | 22 | 38 | 39 | 43 | 106 | 46 | 84 | 14 | 27 | 41 | 19 | 15 | 287 | 160 | 32 | 197 | 3 | 54 | 5 | 135 | 440 | 72 | 18 | 337 | 7 |
l = 3 | 7 | 10 | 8 | 45 | 19 | 58 | 48 | 92 | 28 | 17 | 51 | 34 | 198 | 232 | 60 | 129 | 213 | 65 | 43 | 320 | 27 | 130 | 125 | 337 | 52 | 322 | 113 | 374 | 343 |
l(10) | 18 | 3 | 8 | 108 | 42 | 81 | 180 | 99 | 5 | 153 | 378 | 99 | 432 | 486 | 261 | 540 | 576 | 51 | 315 | 246 | 27 | 810 | 276 | 441 | 459 | 936 | 495 | 252 | 1062 |
χ | 4* | 2 | 5 | 6 | 9* | 4* | 2 | 2* | 2* | 7* | 4* | 5 | 5 | 2* | 4* | 2 | 5 | 2 | 9* | 6* | 2 | 5* | 2 | 4* | 5* | 5 | 2* | 11 | 2* |
p(10) | 1117 | 1153 | 1171 | 1279 | 1297 | 1423 | 1459 | 1531 | 1549 | 1567 | 1621 | 1657 | 1693 | 1747 | 1783 | 1801 | 1873 | 1999 | 2017 | 2053 | 2089 | 2143 | 2161 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
f k/18 | 2∙31 | 2^6 | 5∙13 | 71 | 2^3∙3^2 | 79 | 3^4 | 5∙17 | 2∙43 | 3∙29 | 2∙3^2∙5 | 2^2∙23 | 2∙47 | 97 | 3^2∙11 | 2^2∙5^2 | 2^3∙13 | 3∙37 | 2^4∙7 | 2∙3∙19 | 2^2∙29 | 7∙17 | 2^3∙3∙5 |
l = 9 | 529 | 97 | 180 | 184 | 104 | 289 | 59 | 80 | 161 | 407 | 243 | 138 | 85 | 285 | 219 | 144 | 950 | 503 | 24 | 215 | 857 | 839 | 165 |
l = 3 | 120 | 502 | 420 | 504 | 365 | 643 | 339 | 646 | 275 | 535 | 184 | 70 | 433 | 371 | 193 | 73 | 114 | 808 | 294 | 197 | 826 | 349 | 593 |
l(10) | 558 | 1152 | 1170 | 639 | 1296 | 158 | 162 | 1530 | 1548 | 1566 | 1620 | 552 | 423 | 291 | 1782 | 900 | 1872 | 999 | 2016 | 342 | 1044 | 2143 | 30 |
χ | 2 | 5 | 4* | 2* | 10 | 9* | 6* | 4* | 2 | 2* | 2 | 11 | 2 | 4* | 2* | 11 | 10 | 5* | 5 | 2 | 7 | 9* | 23 |
Sledujte
[editovat]- Předchozí: Délky period převrácených hodnot prvočísel/Délka l = 3 nebo 6, Délky period převrácených hodnot prvočísel/Délka l = 4, Délky period převrácených hodnot prvočísel/Délka l = 5 nebo 10, Délky period převrácených hodnot prvočísel/Délka l = 7 nebo 14, Délky period převrácených hodnot prvočísel/Délka l = 8
- následující: Délky period převrácených hodnot prvočísel/Délka l = 5 nebo 10, Délky period převrácených hodnot prvočísel/Délka l = 11 nebo 22, Délky period převrácených hodnot prvočísel/Délka l = 12
- související: Číselné soustavy/Unikátní prvočísla: l = 9, Číselné soustavy/Unikátní prvočísla: l = 18
- také: Délky period převrácených hodnot prvočísel/Délka l = 3 nebo 6, Délky period převrácených hodnot prvočísel/Délka l = 36