Přeskočit na obsah

Číselné soustavy/Unikátní prvočísla: l = 65

Z Wikiverzity
Tato stránka není ještě hotová.

Toto je 100 % vlastní výzkum. Ne, že by informace, zde uvedené, nebyly dosud známy (naprostá většina z nich je známa od starověku, nepatrný zbytek je znám z počátků novověku); vlastním výzkumem je seřazení/prezentace těch informací a naznačené souvislosti mezi nimi. Viz též en:Repunit a en:Unique prime, příp. Jedničkové číslo (WP). Připomínky jsou vítány - ale raději v diskusi. Tam může kdokoliv i přidávat dotazy či tipy na doplnění. Uvítám i obyčejný komentář kteréhokoliv "kolemjdoucího" o tom, zda je/není článek srozumitelný. kusurija.

Drobečky teorie

[editovat]
  1. V každé číselné soustavě existuje právě a jen jeden jediný repunit o délce 65: 11111111111111111111111111111111111111111111111111111111111111111. Neexistuje žádná číselná soustava o celočíselném základu větším, než 1, kde by tomu tak nebylo.
  2. Repunity o délce 65: 11111111111111111111111111111111111111111111111111111111111111111 jsou vždy (v každé soustavě) součinem 1111111111111 * 10000000000001000000000000100000000000010000000000001 a zároveň také součinem 11111 * 1000010000100001000010000100001000010000100001000010000100001. Podíl 10000000000001000000000000100000000000010000000000001/11111 je roven podílu 1000010000100001000010000100001000010000100001000010000100001/1111111111111 a je vždy ve tvaru g0000g0000g00g0g00g0g00g0gg0g0gg0g0gg0gggg0gggg1(z), kde g = z - 1. Pokud je prvočíslem, jedná se o unikátní prvočíslo (soustavy z) a délka jeho převrácené hodnoty je (l) = 65.
  1. Stejnou délku p.h. (t.j. 65) má toto prvočíslo p i ve všech soustavách z(n), kdy n (exponent) není dělitelné ani třinácti, ani pěti, natož šedesáti pěti. Totéž platí i pro základy, které jsou modulem výše uvedených k p. Ze všech těchto je právě 48 z menších, než p.
  2. Pro (kladné) základy p - z platí, že jejich l.p. = 130.
  3. Zdaleka ne každé číslo g0000g0000g00g0g00g0g00g0gg0g0gg0g0gg0gggg0gggg1(z) je prvočíslem. Faktory takovýchto čísel vždy odpovídají vzorci p = 130n + 1 a jejich délka p.h. v té soustavě = 65.
  4. V desítkové soustavě všechna tato unikátní prvočísla (i v předchozím bodě zmíněné faktory) končí jedničkou.

Tabulka nejmenších unikátních p (U65)

[editovat]

legenda:

  • p - prvočíslo
  • U - unikátní prvočíslo
  • U65 - unikátní prvočíslo o délce p.h. l = 65
  • z - základ číselné soustavy
  • f - w:faktor
  • k - "kořen" prvočísla, t.j. p - 1 (tento symbol je používán čistě jen k úspoře místa, neboť zápis k/130 zabere méně mista, nežli zápis (p - 1)/130)
  • l.p. délka periody 1/p
  • l.p.(10) délka periody převrácené hodnoty prvočísla p v desítkové soustavě
  • ∙ - znak násobení
  • ^ - znak umocňování; zápis 5^3 je totožný zápisu 53 ( = 125)
Tabulka nejmenších unikátních p g0000g0000g00g0g00g0g00g0gg0g0gg0g0gg0gggg0gggg1(z) (U65)
p 145295143558111 8994845336544023765334125097682352908353972360492128645366446593771260964243795658093501 71489198836412567361710059553741939382654009869404052451611543456941143587934689591561281
z 2 68 71
f k/130 3^2∙7^2∙
∙2534364967
2∙3^2∙5^2∙7^2∙17∙19^2∙23∙31∙37∙67∙109∙647∙1303∙196117∙
∙16051999540517336650604406118519524192459076797858107263457
2^5∙3^3∙7∙71∙107∙1657∙2521∙5113∙631789∙1954357∙
∙453832990796728994471326409135803888878308171278742507617

Unikátních prvočísel tohoto typu je nekonečně mnoho, stejně jako ostatních unikátních prvočísel.

Sledujte

[editovat]

Repunity

[editovat]