Číselné soustavy/Unikátní prvočísla: l = 82

Z Wikiverzity
Skočit na navigaci Skočit na vyhledávání
Tato stránka není ještě hotová.

Toto je 100 % vlastní výzkum. Ne, že by informace, zde uvedené, nebyly dosud známy (naprostá většina z nich je známa od starověku, nepatrný zbytek je znám z počátků novověku); vlastním výzkumem je seřazení/prezentace těch informací a naznačené souvislosti mezi nimi. Viz též en:Repunit a en:Unique prime, příp. Jedničkové číslo (WP). Připomínky jsou vítány - ale raději v diskusi. Tam může kdokoliv i přidávat dotazy či tipy na doplnění. Uvítám i obyčejný komentář kteréhokoliv "kolemjdoucího" o tom, zda je/není článek srozumitelný. kusurija.

Drobečky teorie[editovat]

  1. V každé číselné soustavě existuje právě a jen jeden jediný repunit o délce 82: 1111111111111111111111111111111111111111111111111111111111111111111111111111111111. Neexistuje žádná číselná soustava o celočíselném základu větším, než 1, kde by tomu tak nebylo.
  2. Repunity o délce 82: 1111111111111111111111111111111111111111111111111111111111111111111111111111111111(z) jsou vždy (v každé soustavě) dělitelné 11111111111111111111111111111111111111111 * 100000000000000000000000000000000000000001. V žádné soustavě není 100000000000000000000000000000000000000001(z) prvočíslo, vždy je dělitelné ještě 11(z). Tento podíl je vždy ve tvaru g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g1, (jinak zapsáno: g0[20]+1) kde g = z - 1. Pokud je prvočíslem, jedná se o unikátní prvočíslo (soustavy z) a délka jeho převrácené hodnoty je (l =) 82.
  3. Stejnou délku p.h. (t.j. 82) má toto prvočíslo p i ve všech soustavách z(2n + 1) (lichý exponent) s výjimkou všech z(41*(2n+1)) (exponent, dělitelný 41), kde je l.p. = 2. Totéž platí i pro základy, které jsou modulem výše uvedených k p. Ze všech těchto je právě čtyřicet jedna z menších, než p.
  4. Pro (kladné) základy p - z platí, že jejich l.p. = 41(10).
  5. zdaleka ne každé číslo g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g1(z) je prvočíslem. Faktory takovýchto čísel vždy odpovídají vzorci p = 82n + 1 a jejich délka p.h. v té soustavě = 82.
  6. Pro soustavy z = 41(10)n - 1 navíc platí, že číslo g0[20]+1(z) je dělitelné 41.

Tabulka nejmenších unikátních p (U82)[editovat]

legenda:

  • p - prvočíslo
  • U - unikátní prvočíslo
  • U82 - unikátní prvočíslo o délce p.h. l = 82
  • z - základ číselné soustavy
  • f - w:faktor
  • k - "kořen" prvočísla, t.j. p - 1 (tento symbol je používán čistě jen k úspoře místa, neboť zápis k/82 zabere méně mista, nežli zápis (p - 1)/82)
  • l.p. délka periody 1/p
  • l.p.(10) délka periody převrácené hodnoty prvočísla p v desítkové soustavě
  • ∙ - znak násobení
  • ^ - znak umocňování; zápis 5^3 je totožný zápisu 53 ( = 125)
Tabulka nejmenších unikátních p g0[20]+1(z) (U82)
p 254760179343040585394724919772965278539769280548173566545431025735121201 926365886212407454089949786471612199969953868511123801565726556169532201
z 61 63
f k/82 2^3∙3∙5^2∙11∙61∙131∙241∙281∙1861∙7121∙21491∙1238411∙6922921∙23711921∙
∙3214002728921∙4674531865001
2^2∙3^2∙5^2∙7∙11∙31∙73∙397∙521∙701∙2011∙6121∙107897∙16007041∙
∙49618654502861∙470982536381543470441

Unikátních prvočísel tohoto typu je nekonečně mnoho, stejně jako ostatních unikátních prvočísel.

Sledujte[editovat]

Repunity[editovat]