Číselné soustavy/Unikátní prvočísla: l = 146
Vzhled
Tato stránka není ještě hotová.
Toto je 100 % vlastní výzkum. Ne, že by informace, zde uvedené, nebyly dosud známy (naprostá většina z nich je známa od starověku, nepatrný zbytek je znám z počátků novověku); vlastním výzkumem je seřazení/prezentace těch informací a naznačené souvislosti mezi nimi. Viz též en:Repunit a en:Unique prime, příp. Jedničkové číslo (WP). Připomínky jsou vítány - ale raději v diskusi. Tam může kdokoliv i přidávat dotazy či tipy na doplnění. Uvítám i obyčejný komentář kteréhokoliv "kolemjdoucího" o tom, zda je/není článek srozumitelný. kusurija.
Drobečky teorie
[editovat]- V každé číselné soustavě existuje právě a jen jeden jediný repunit o délce 146: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111. Neexistuje žádná číselná soustava o celočíselném základu větším, než 1, kde by tomu tak nebylo.
- Repunity o délce 146: 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111(z) jsou vždy (v každé soustavě) součinem 1111111111111111111111111111111111111111111111111111111111111111111111111(z) * 10000000000000000000000000000000000000000000000000000000000000000000000001(z). V žádné soustavě není 10000000000000000000000000000000000000000000000000000000000000000000000001(z) prvočíslo, vždy je dělitelné ještě 11(z). Tento podíl je vždy ve tvaru g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g1, (jinak zapsáno: g0[36]+1) kde g = z - 1. Pokud je prvočíslem, jedná se o unikátní prvočíslo (soustavy z) a délka jeho převrácené hodnoty je (l =) 146.
- Stejnou délku p.h. (t.j. 146) má toto prvočíslo p i ve všech soustavách z(2n + 1) (lichý exponent) s výjimkou všech z(73*(2n+1)) (exponent, dělitelný 73), kde je l.p. = 2. Totéž platí i pro základy, které jsou modulem výše uvedených k p. Ze všech těchto je právě sedmdesát dva z menších, než p.
- Pro (kladné) základy p - z platí, že jejich l.p. = 73(10).
- zdaleka ne každé číslo g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g0g1(z) je prvočíslem. Faktory takovýchto čísel vždy odpovídají vzorci p = 146n + 1 a jejich délka p.h. v té soustavě = 146.
- Pro soustavy z = 73(10)n - 1 navíc platí, že číslo g0[36]+1(z) je dělitelné 73.
Tabulka nejmenších unikátních p (U146)
[editovat]legenda:
- p - prvočíslo
- U - unikátní prvočíslo
- U146 - unikátní prvočíslo o délce p.h. l = 146
- z - základ číselné soustavy
- f - w:faktor
- k - "kořen" prvočísla, t.j. p - 1 (tento symbol je používán čistě jen k úspoře místa, neboť zápis k/146 zabere méně mista, nežli zápis (p - 1)/146)
- l.p. délka periody 1/p
- l.p.(10) délka periody převrácené hodnoty prvočísla p v desítkové soustavě
- ∙ - znak násobení
- ^ - znak umocňování; zápis 5^3 je totožný zápisu 53 ( = 125)
z | p(10) |
---|---|
f k/146 | |
18 | 2270592879503055132796830122631138446536900405466355275206194664966635063857148212298893851 |
3^2∙5^2∙7^3∙13∙17∙37^2∙113∙229∙307∙457∙929∙991∙25309∙34327∙465841∙33388093∙11019855601∙1338258845052393545608356556801 | |
214 | 613432801073973580080566787694187864374349284361048747097171186120739275779089456415736969855932384616189193988138471525965533071244663278709420216535918013274588508903 |
3^3∙7^2∙13∙19∙37∙41∙71∙79∙107∙109∙307∙313∙541∙577∙601∙1117∙1693∙4177∙4483∙6841∙33601∙41221∙52057∙62417∙4360141∙ ∙9661969∙13599433∙757478089∙46290218077∙199285661887322293∙8515415489258383273∙193375708929116631026929 |
Unikátních prvočísel tohoto typu je nekonečně mnoho, stejně jako ostatních unikátních prvočísel.
Sledujte
[editovat]- Předchozí: Číselné soustavy/Unikátní prvočísla: l = 141, Číselné soustavy/Unikátní prvočísla: l = 142, Číselné soustavy/Unikátní prvočísla: l = 143, Číselné soustavy/Unikátní prvočísla: l = 144, Číselné soustavy/Unikátní prvočísla: l = 145
- následující: Číselné soustavy/Unikátní prvočísla: l = 147, Číselné soustavy/Unikátní prvočísla: l = 148, Číselné soustavy/Unikátní prvočísla: l = 149, Číselné soustavy/Unikátní prvočísla: l = 150
- také: Číselné soustavy/Unikátní prvočísla: l = 73, Číselné soustavy/Unikátní prvočísla: l = 134, Číselné soustavy/Unikátní prvočísla: l = 158, Číselné soustavy/Unikátní prvočísla: l = 166, Číselné soustavy/Unikátní prvočísla: l = 292
- Délky period převrácených hodnot prvočísel/Délka l = 73 nebo 146
Repunity
[editovat]- Předchozí: Číselné soustavy/Repunitová prvočísla: l = 127, Číselné soustavy/Repunitová prvočísla: l = 131, Číselné soustavy/Repunitová prvočísla: l = 137, Číselné soustavy/Repunitová prvočísla: l = 139
- následující: Číselné soustavy/Repunitová prvočísla: l = 149, Číselné soustavy/Repunitová prvočísla: l = 151, Číselné soustavy/Repunitová prvočísla: l = 157
- také Číselné soustavy/Repunitová prvočísla: l = 73